Brief communication

Exceptional memory performance in the Long Life Family Study

Sandra Barral a,*, Stephanie Cosentino a, Rosann Costa a, Stacey L. Andersen b, Kaare Christensen c, John H. Eckfeldt d, e, f, Anne B. Newman g, Thomas T. Perls b, Michael A. Province h, Evan C. Hadley i, Winifred K. Rossi i, Richard Mayeux a,*, for the Long Life Family Study

a Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, Department of Neurology, New York, NY, USA
b Department of Epidemiology, Graduate School of Public Health, Pittsburgh, PA, USA
c The Danish Aging Research Center, University of Southern Denmark, Odense C, Denmark
d Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
e Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
f Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
g Division of Statistical Genomics, Data Management Coordinating Center, Washington University School of Medicine, St. Louis, MI, USA
h Department of Epidemiology, Graduate School of Public Health, Pittsburgh, PA, USA
i The Danish Aging Research Center, University of Southern Denmark, Odense C, Denmark

Keywords:
Long Life Family Study
Exceptional memory
Quantitative trait
Genetic variants

Article info

Article history:
Received 29 April 2013
Accepted 1 May 2013

Abstract

Research to understand variability at the highest end of the cognitive performance distribution has been scarce. Our aim was to define a cognitive endophenotype based on exceptional episodic memory (EM) performance and to investigate familial aggregation of EM in families from the Long Life Family Study (LLFS). Using a sample of 1911 nondemented offspring of long-lived probands, we created a quantitative phenotype, EM (memory z ≥ 1.5), and classified LLFS families as EM and non-EM families based on the number of EM offspring. We then assessed differences in memory performance between LLFS relatives in the parental generation of EM families and those in non-EM families using multivariate analysis adjusted for APOE Apolipoprotein E genotype. LLFS relatives in the proband generation from EM families showed better EM performance than those from non-EM families (β = 0.74, standard error = 0.19, p = 1.4 × 10⁻⁴). We demonstrated that there is a familial correlation of the EM endophenotype, suggesting that genetic variants might influence memory performance in long-lived families.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Human cognitive performance is highly variable. Family, twin, and adoption studies have documented strong evidence that genetic factors contribute to variation in the normal range of cognitive performance (Butcher et al., 2008; Deary et al., 2006). In contrast, little is known about the genetic factors that contribute to exceptionally high levels of cognitive performance. Quantitative genetic research in the normal range of cognitive variation has shown that virtually all cognitive tasks show appreciable heritability (Pominy and DeFries, 1998). For episodic memory (EM), for example, we and others (Johansson et al., 1999; Wilson et al., 2011) have consistently reported heritability estimates between 30% and 60%, indicating that much of the observed variability in this cognitive domain is genetically influenced. Subsequent efforts have been aimed at identifying the specific genes responsible for the heritability of specific cognitive abilities. Most of the research has focused on conditions associated with cognitive disabilities because these conditions can provide important clues to the potential effect of genes on cognition. As a result, hundreds of single-gene defects have been described as impairing cognitive development (Freund and Reiss, 1991; Reiss et al., 1995). However, variability in normal cognitive function is most likely the result of many different genes interacting with each other and with nongenetic factors as well. In fact, genome-wide association studies of general cognitive ability have demonstrated that many genes of small effect make up 60% of the heritable variation in the trait (Butcher et al., 2008; Davis et al., 2010). Similarly, the majority of the research on exceptional cognitive abilities has explored the contribution of both genetic and environmental factors to the differences observed among individuals with exceptional abilities. As with estimates found for normal variation, findings from the small number of studies that

0197-4580/$– see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neurobiolaging.2013.05.002
have assessed cognitive exceptionality in twins reported high heritability estimates for high cognitive function (Haworth et al., 2009; Petril et al., 2009; Plomin and Haworth, 2009; Saudino et al., 1994).

The biological pathways that influence longevity are still unknown. We and others (Barral et al., 2012; Fried et al., 1998; Korten et al., 1999; Schupf et al., 2003) have documented a significant association between preserved cognitive function and successful aging. It is likely that cognitive traits, such as exceptional memory, might represent 1 of the several endophenotypes contributing to exceptional survival.

In this study, we take into account the complex quantitative nature of cognitive performance and define a phenotype based on the exceptional performance of EM exhibited by offspring in the Long Life Family Study cohort. We aim to evaluate whether there is a familial clustering of the exceptional memory phenotype (EM) within Long Life Family Study (LLFS) families that would suggest its potential value for further genetic studies.

2. Materials and methods

2.1. LLFS cohort

Characteristics of the LLFS cohort have been described elsewhere (Barral et al., 2012).

2.2. Cognitive assessment: EM domain

Using the nondemented offspring of the LLFS probands as a normative sample (N = 1911), we computed demographically adjusted z scores for 2 memory tests, immediate and delayed recall of story A from the Wechsler Memory Scale—Revised (Wechsler, 1987) using linear regression models adjusting for sex, age, and education. These demographically adjusted scores were then averaged to obtain the EM score.

2.3. EM quantitative trait

In the normative sample, the EM distribution had a mean value of 0.002 (standard deviation [SD] = 0.96), ranging from a minimum z score of −3.04 to a maximum z score of 3.26 (Fig. 1). We used a threshold of 1.5 SD above the mean score to declare that an individual has exceptional memory (EM z score ≥ 1.5). We used this threshold to identify EM subjects in the entire offspring generation of the LLFS cohort (nondemented offspring and their unrelated nondemented spouses, N = 2547). Based on the number of offspring with EM, we categorized the LLFS families as families with and without exceptional memory, EM families (families with at least 2 EM offspring) and non-EM families (families with 1 or none EM offspring).

2.4. Comparison groups

We investigated differences in memory performance of probands and their siblings in EM families and probands and their relatives in non-EM families. Secondary analysis assessed differences in performance for 3 comparison groups: (1) spouses of the LLFS offspring in the EM families versus spouses of the LLFS offspring in the non-EM families; (2) offspring of the non-EM families versus the entire group of spouses in the offspring generation; and (3) offspring of the EM families versus the entire group of spouses.

2.5. Statistical analysis

To assess differences in memory performance between the different comparison groups, we used general linear models and generalized estimating equations (GEEs). For those group comparisons involving relatives of the LLFS probands, GEE allows adjustments for differences in family size and accommodates the dependence among related individuals without assuming the joint distribution of the whole family. All multivariate analyses were adjusted for APOE genotype—genotypes at the APOE locus were recoded into 2 categories after excluding heterozygous individuals (ε2ε4: (1) having no APOE ε4 allele and (2) having at least 1 copy of the APOE ε4 allele. Analyses were not demographically adjusted as the dependent variable was already adjusted for age, sex, and education.

3. Results

The LLFS dataset used in this study was restricted to families without missing values for the cognitive tasks and demographic variables considered, consisting of 2971 subjects from 557 two-generation LLFS families. When our selection criterion was applied to the entire offspring generation of the LLFS cohort (N = 2547), we identified 18 EM families (N = 405 subjects) and 539 non-EM families (N = 2566 subjects). Table 1 summarizes the results from the different linear models considered. Results from our primary comparison analysis showed that probands and their siblings in EM families achieved significantly higher scores on EM compared with probands and their siblings in non-EM families—estimated average EM of 0.56 (standard error [SE] = 0.19) vs. −0.18 (SE = 0.05), \(p = 1.4 \times 10^{-4}\). Secondary analysis showed that spouses of the LLFS offspring in EM families demonstrated no significant difference in performance compared with spouses from non-EM families (estimated average EM of 0.20 [SE = 0.08] vs. 0.02 [SE = 0.04], \(p = 0.069\)). The non-EM offspring have significantly worse memory...
performance than the entire group of spouses (estimated average EM of -0.12 [SE = 0.03] vs. 0.06 [SE = 0.04], $p = 6 \times 10^{-5}$). As expected, GEE models showed that EM offspring have exceptional memory scores when compared with the entire group of unrelated spouses (data not shown). Inclusion of APOE did not change the effect of the estimates in any of the models considered (data not shown).

4. Discussion

We found evidence for significant familial clustering of our quantitative trait, exceptional memory performance (EM), within families ascertained on the basis of their exceptional survival. The parental generation of the LLFS’ offspring with exceptional memory showed significantly better performance for this cognitive domain compared with the parental generation of LLFS’ offspring without exceptional memory.

The offspring without exceptional memory demonstrated significantly worse memory performance compared with their spouses ($\beta = -0.18$, SE = 0.04, $p = 6 \times 10^{-5}$), and offspring with exceptional memory demonstrated a significantly better memory performance compared with their spouses ($\beta = 1.82$, SE = 0.07, $p < 0.001$). These findings are consistent with the fact that the selection criterion applied to the LLFS offspring biased the groups toward exceptional versus nonexceptional cognition, whereas the spousal control groups included individuals at all levels of cognition.

Previous studies on exceptional cognitive skills focused primarily on general cognitive ability (g) and explored the heritability of g using twin studies, usually involving a small number of samples (Petrill et al., 1998; Plomin et al., 1993; Saudino et al., 1994). In a well-powered analysis using data from 11,000 twin pairs, (Haworth et al., 2009) investigated genetic and nongenetic influences on g for the top 15% of the distribution and found substantial contribution of genetic variation whereas influence of shared environmental effects for high cognitive abilities was only moderate. Their results substantially overlap with previous findings for the normal distribution, suggesting that the etiology of exceptional cognitive abilities differs quantitatively and not qualitatively from that of the normal distribution of cognitive abilities. We will be able to address this hypothesis in future studies by estimating the heritability of the EM phenotype in the LLFS cohort.

Our findings suggest that EM may be 1 of the several biological pathways contributing to the exceptional survival of the LLFS families. Demonstration of familial clustering warrants further genetic studies to determine the specific genetic contributions to the EM phenotype. Identifying specific genes that contribute to the EM phenotype will help to identify people and pathways likely to have exceptional longevity.

The limitations of our study include the following: (1) we defined the EM phenotype using a fairly liberal definition of EM (1.5 SD above the mean), reasoning that this cutoff will capture those individuals with high memory without significantly penalizing sample size and statistical power; and (2) there might be other unexamined reasons explaining the familial clustering of the EM phenotype such as shared genes for an endophenotype that influences cognitive performance and/or shared nongenetic factors among family members.

We investigated the familial aggregation of exceptional memory in a family cohort selected based on the exceptional survival of their probands. We have confirmed that exceptional EM performance aggregates strongly within LLFS families. Future genetic studies are needed to identify genetic and nongenetic factors contributing to exceptional cognition.

Disclosure statement

The authors declare no competing financial or personal interests that can influence the presented work.

Acknowledgements

LLFS is sponsored by the National Institute on Aging (NIA) cooperative agreements U01-A023712, U01-A023744, U01-A023746, U01-A023749, and U01-A023755). Danish 1905-cohort is funded by National Institutes of Health/NIA, P01 AG08761 and the Danish Aging Research Center is funded by the VELUX Foundation. The authors specially thank Heidi Dubrouillet, Project Manager, at the Division of Statistical Genomics of Washington University School of Medicine.

References

Table 1

Demographics and results of the linear regression equation for the LLFS comparison groups

<table>
<thead>
<tr>
<th>LLFS comparison groups</th>
<th>N</th>
<th>Age, average (SD)</th>
<th>Education, average (SD)</th>
<th>Females (%)</th>
<th>APOE (% x4)</th>
<th>β (SE)</th>
<th>p</th>
<th>EM, average (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental generation EM families</td>
<td>21</td>
<td>85 (4.8)</td>
<td>7 (4.3)</td>
<td>71</td>
<td>2</td>
<td>0.74 (0.19)</td>
<td>1.4 x 10^-4</td>
<td>0.56 (0.19)</td>
</tr>
<tr>
<td>Parental generation non-EM families</td>
<td>297</td>
<td>86 (5.9)</td>
<td>11 (2.9)</td>
<td>57</td>
<td>13</td>
<td>-0.18 (0.04)</td>
<td>6 x 10^-5</td>
<td>-0.18 (0.05)</td>
</tr>
<tr>
<td>Offspring non-EM families</td>
<td>1612</td>
<td>61 (8.0)</td>
<td>13 (2.6)</td>
<td>60</td>
<td>19</td>
<td>-0.18 (0.04)</td>
<td>6 x 10^-5</td>
<td>-0.12 (0.01)</td>
</tr>
<tr>
<td>Spouses</td>
<td>636</td>
<td>61 (8.3)</td>
<td>12 (3.4)</td>
<td>49</td>
<td>24</td>
<td>0.06 (0.04)</td>
<td>6 x 10^-5</td>
<td>0.06 (0.04)</td>
</tr>
</tbody>
</table>

Key: EM, episodic memory; LLFS, Long Life Family Study; SD, standard deviation; SE, standard error.

